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Abstract 

A method for automated classification of surface and cloud types using Moderate-

Resolution Imaging Spectroradiometer (MODIS) radiance measurements has been 

developed.  The MODIS cloud mask is used to define the training sets.  Surface and 

cloud type classification is based on the maximum likelihood (ML) classification method.  

Initial classification results define training sets for subsequent iterations.  Iterations end 

when the number of pixels switching classes becomes smaller than a predetermined 

number or when other criteria are met.  The mean vector in the spectral and spatial 

domain within a class is used for class identification and a final 1km-resolution 

classification mask is generated for such field of view in a MODIS granule.  This 

automated classification refines the output of the cloud mask algorithm, and enables 

further applications such as clear atmospheric profile or cloud parameter retrievals from 

MODIS and Atmospheric Infrared Sounder (AIRS) radiance measurements.  The 

advantages of this method are that the automated surface and cloud type classifications 

are independent of radiance or brightness temperature threshold criteria, and that the 

interpretation of each class is based on the radiative spectral characteristics of different 

classes.  This paper describes the ML classification algorithm and presents daytime 

MODIS classification results.  The classification results are compared with the MODIS 

cloud mask, visible images, infrared window images, and other observations for an initial 

validation. 
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1. Introduction 

MODIS is a key instrument on the Earth Observing System (EOS) for conducting 

global change research.  It provides global observations of Earth's land, oceans, and 

atmosphere in 36 visible (VIS), near infrared (NIR) and infrared (IR) regions of the 

spectrum from 0.4 to 14.5 µm.  MODIS measurements record biological and geophysical 

processes on a global scale every 1 to 2 days in unprecedented detail.   

MODIS cloud classification has many applications.  MODIS atmospheric and 

surface parameter retrievals require cloud free measurements (Li et al. 2001a), while 

cloud type information such as single/multi-layer or high/medium/low cloud information 

will greatly benefit cloud parameter retrievals (Frey et al. 1999; Li et al. 2001b) and the 

derivation of cloud motion vectors (Velden et al. 1997).  Cloud classification can also 

improve the monitoring of deep convective clouds and rainfall estimation from IR cloud 

imagery data (Li et al. 1992, 1993).  MODIS cloud information can further the 

International Satellite Cloud Climatology Program (ISCCP) that was stimulated by 

research on several methods of cloud classification that have been tested in a systematic 

algorithm intercomparison (Rossow et al. 1985).   In addition, clear/single/multi-layer 

cloud information from MODIS measurements within a single Atmospheric Infrared 

Sounder (AIRS) footprint (15 km) will greatly enhance the cloud-clearing of partly 

cloudy AIRS radiances (Susskind et al. 1998) and therefore improve atmospheric 

temperature and moisture profiles through the synergism of MODIS and AIRS radiance 

measurements from the Aqua satellite launched on May 04, 2002.  Surface and cloud 
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type classification and identification are very important for surface, atmospheric and 

cloud property retrievals. 

Researchers at the Cooperative Institute for Meteorological Satellite Studies 

(CIMSS) of the University of Wisconsin-Madison have developed an algorithm for clear 

sky detection from MODIS measurements (Ackerman et al. 1998).  The MODIS cloud 

mask relies on a variety of threshold tests for clear sky and cloudy determinations.  This 

reliance on thresholds results in limitations in special situations, such as separating low 

clouds in the presence of snow.  To reduce the dependence on thresholds in the cloud 

mask algorithm, the ML classification procedure can be used as a supplement to improve 

the detection of clear and cloudy skies in the MODIS imagery. 

A number of researchers have addressed cloud classification from a variety of 

perspectives.  Imagery classification studies include, but are not limited to, discrimination 

of cloud types in polar regions (Ebert 1987, 1989; Key et al. 1989; Key 1990; Welch et al 

et al. 1992) and in tropical scenes (Desbois et al. 1982; Inoue 1987), discrimination of ice 

and water clouds (Knottenberg and Raschke 1982), separation of clouds and snow 

(Tsonis 1984; Allen et al. 1990; Li and Zhou 1990), detection of fire and smoke (Baum 

and Trepte 1999), classification of ocean clouds (Garand 1988; Tag et al. 2000; Lubin 

and Morrow 1998), and clear-sky classification (Saunders and Kriebel 1998; Vemury et 

al. 2001).  The classification methods include a variety of approaches such as neural 

networks, maximum likelihood, and fuzzy logic.  In general, classification procedures 

can be divided into two types: supervised and unsupervised.  The premise of supervised 

classification is the "training" of a classifier based on known cases of specific scenes such 

that the classifier, once trained, can be used with confidence on unknown cloud image 



 4

samples.  This method, although straightforward, entails considerable effort in the manual 

typing of the training samples (Tag et al. 2000).  An unsupervised classification method 

allows the classifier to determine its own division of cloud types using a mathematical 

separability of classes based on designated scene or cloud radiative spectral 

characteristics.  However, good initial classification is very important for unsupervised 

classification due to insufficient training data. 

In this paper, the MODIS cloud mask (Ackerman et al. 1998) information is used 

as the initial classification for the unsupervised MODIS surface and cloud type 

classification approach.  The objectives of this study are to: 

(1) Provide an additional clear/cloud mask that can be used for validation or comparison 

with other cloud products from MODIS measurements. 

(2) Determine a reliable clear/cloudy index for atmospheric total precipitable water 

(TPW) and total column ozone retrieval from MODIS clear sky radiance measurements. 

(3) Estimate cloud types that can greatly benefit cloud-top pressure and effective cloud 

amount retrievals with combined MODIS and AIRS measurements. 

(4) Generate clear/single/multi-layer cloud information within an AIRS footprint for 

better AIRS cloud-clearing. 

The unique features of this cloud classification study are: 

(1) The MODIS cloud mask is used to provide a very good initial classification for the 

ML classifier.  

(2) Unlike the MODIS cloud mask that returns a confidence level of clear ranging from 1  

(high) to 0 (low), the ML classifier provides a binary yes/no answer for each pixel on 

clear/cloud discrimination.  
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(3) Unlike other cloud classification procedures that rely on spectral coherence in a 

spatial area of N by N pixels (for example, Tag et al. (2000) use 16 by 16 km areas for 

AVHRR cloud classification), this approach uses 1km single field of view features in the 

classification; therefore, it returns a 1km high spatial resolution classification mask. 

(4) The algorithms for surface and cloud type identification in the MODIS cloud mask 

are also used in the ML classifier, thus reducing the error due to manual identification of 

each class. 

Section 2 provides a description of the classification algorithm.  Section 3 outlines 

the algorithms for the scene and cloud classification with MODIS spectral band radiance 

measurements.  Section 4 presents a summary of MODIS spectral characteristics and 

feature selection.  Section 5 summarizes the physical basis for the identification of 

surface and cloud types in the ML classification mask.  Section 6 describes the daytime 

classification and initial validation using MODIS measurements.  A discussion of issues 

affecting classification results is given in section 7.  Section 8 describes the conclusions 

and future work. 

2. Summary of the MODIS cloud mask algorithm 

MODIS measures radiances in bands 1 and 2 at 0.25km spatial resolution, in 

bands 3 - 7 at 0.5km resolution, and the remaining 29 bands at 1km resolution (see Table 

1 for the MODIS spectral band specification; the numbers in this table are cited from 

http://modis.gsfc.nasa.gov/about/specs.html).  Radiances from 14 spectral bands (bands 1 

and 2, bands 5 and 6, bands 18-21, bands 26 and 27, band 29, bands 31 and 32, band 35) 

are used in the MODIS cloud mask algorithm (initial classification) to estimate whether a 

given view of the Earth surface is obstructed by clouds or optically thick aerosol and 
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whether a clear scene is affected by cloud shadows (Ackerman et al 1998).  The physical 

basis for the MODIS cloud detection is that clouds are generally characterized by higher 

reflectance and lower brightness temperatures than the underlying Earth surface.  The 

MODIS cloud mask algorithm determines if a given pixel is clear by combining the 

results of several spectral threshold tests.  A confidence level of clear sky for each ground 

instantaneous field-of-view (GIFOV) is estimated based on a comparison between 

observed radiances and specified thresholds.  The cloud mask algorithm also uses 

background data such as a water/land index. 

The MODIS cloud mask (http://modis -atmos.gsfc.nasa.gov/MOD35_L2/index.html) 

provides fifteen classes.  Those classes are the primary input for the initial classification 

of the iterative ML classification procedure.  The fifteen classes are listed in Table 2.  

The initial surface and cloud types used for the ML classification procedure varies with 

the number of classes one attempts to extract from the MODIS cloud mask (e.g., the two 

clear versus cloudy classes would be very different from the fifteen classes extracted 

here).   

3.  ML classification algorithm based on the MODIS cloud mask 

Classification or clustering of the radiances and local spatial distribution of the 

radiances is an important part of data analysis and image segmentation.  A group or 

cluster refers to a class of data that has a similar appearance (i.e., for MODIS images, it 

can be a particular surface type or cloud cover).  Basic data clustering does not need any 

external information for its completion.   

In general, the distribution of each class presented in the MODIS image data can 

be approximated by a multivariate normal distribution, or locally normal distribution (Lee 
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et al. 1999), and the classification procedure can be performed by the well-known ML or 

quadratic classifier (Haertel and Landgrebe 1999) 

)(ln2ln)()()( 1
iiii

T
ii PXXXG ωµµ +Σ−−Σ−−= − ,  (1) 

where iω  represents a particular class, X  an unlabeled vector of a pixel spanning the 

space of the radiance and spatial distribution of the radiance, iµ  the class mean vector in 

that space, iΣ  the class covariance matrix, )( iP ω  the corresponding a priori probability 

for class iω , and )(XGi  the discriminate function associated with class iω ; subscript i  

is the index for the i th class.  For simplicity, assuming that the probability )( iP ω  for 

each class iω  is equal, a distance is defined to assign each pixel to particular class iω  

iii
T

ii XXXD Σ+−Σ−= − ln)()()( 1 µµ .    (2)  

Mathematically, the pixel X  is assigned to class iω  if 

 )()( XDXD ji ≤    for all ij ωω ≠ .     (3) 

  The clustering algorithm can be described by the following steps: 

(1) Classify the MODIS measurements using the MODIS cloud mask, and calculate the 

mean vector and covariance matrix of each class within the MODIS cloud mask; 

(2) Calculate the distances between the vector of each pixel and mean vectors of different 

classes and assign the pixel to the nearest class; 

(3) Update the mean vector and covariance matrix of each class after all pixels have been 

reassigned to the nearest classes;  

(4) Repeat steps 2 and 3 until convergence criteria are met.  In this paper, if the sum of 

the off-diagonal elements for each class in the classification matrix (see the definition of 
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classification matrix in section 7) is less than 6%, the iterations end.  In general, 6 ~ 7 

iterations are needed for a final ML classification result.  

 

4.  Feature selection for MODIS surface and cloud type classification 

There are three types of features (radiances, variances of radiances, and spectral 

brightness temperature differences) in the MODIS classification.  All the features are 

determined at 1km resolution.  More spectral bands are used for surface and cloud type 

classification than used for cloud masking.  

(1) Spectral band radiances 

Radiances provide the primary spectral information for different scene and cloud 

types.  MODIS VIS/NIR bands 1-7, bands 17-29, and bands 31-35 are used in the 

daytime classification.  The images for VIS/NIR bands 1-7 are all mapped into the IR 

spatial resolution of 1km.  Hereafter, we use a GIFOV to define the MODIS original 

resolution; for example, for band 1 or 2 one GIFOV has 0.25km resolution, for bands 3 – 

7 one GIFOV has 0.5km resolution, and for bands 17 – 36 one GIFOV has 1km 

resolution.  We use a pixel as the 1km average of GIFOVs for VIS/NIR bands 1-7 

images; for bands 17-36 a pixel is simply a GIFOV.   

VIS/NIR bands 1-7 are known to be sensitive to various types of clouds.  The IR 

short-wave bands 20 - 25 have a strong cloud reflective radiance component in addition 

to a thermal emission during the daytime.  The IR mid-wave bands 27-29 can be used 

with longwave window bands 31 and 32 to detect clouds through their strong water vapor 

absorption effects. The IR long-wave spectral bands 31-36, sensitive to different layers of 
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clouds, are used to determine the cloud-top pressure (CTP) and effective cloud amount 

(ECA) (Frey et al. 1999; Li et al. 2001b).  

(2) Variance images 

A variance image is constructed for each of the VIS/NIR bands 1- 7 images and 

for the IR longwave 6.7µm (band 27), 7.3µm (band 28), and 11µm window (band 31) 

images.  In the variance images for VIS/NIR bands 1 – 7, the value attributed to each 

1km pixel is the local standard deviation (LSD) of GIFOVs within the 1km area (for 

example, the standard deviation is computed from 4 by 4 values (GIFOVs) for bands 1 

and 2, and from 2 by 2 GIFOVs for bands 3-7).  In the IR 6.7µm, 7.3µm, and 11µm IR 

11µm variance images, the value attributed to each pixel is the local standard deviation in 

the 3 by 3 GIFOV neighborhood of the pixel (the standard deviation computed from the 

nine values centered on the pixel).  Variance images for VIS/NIR bands 1-7 along with 

variance images for IR bands 27, 28 and 31 are used in the ML classification procedure. 

Variance or texture images of AVHRR have been used in detecting surface types 

and different types of clouds (Coakley and Bretherton 1982; Seze and Desbois 1987; 

Uddstrom and Gray 1996).  In the associated IR 11µm window variance image, the 

boundaries of different classes, or broken clouds, are well defined by very high variances, 

whereas the variance is far smaller inside a class.  Cirrus corresponds to areas of high 

variances and low stratiform clouds to areas of low variances.  In the associated VIS/NIR 

band 1 and band 2 images, edges of different classes still present large variances; 

however, contrary to the IR 11µm window variances, low variances in VIS/NIR band 1 

and band 2 are associated with cirrus clouds and relatively high variances with low 

stratiform clouds.  Figure 1 shows the MODIS 0.86µm image in units of reflectance (%) 
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(band 2, left panel) and its variance image (right panel) at 1635 UTC on 5 September 

2000 over the eastern part of the United States.  High variances in Figure 1 indicate cloud 

edges or low clouds.  Figure 2 shows the associated IR 11µm window brightness 

temperature (K) (left panel) and its variance  (right panel) image.  High variances in 

Figure 2 indicate mixed clouds or cirrus clouds.  The variance range approximately from 

0 to 10% for VIS/NIR images and 0 to 6K for IR images (from Figures 1 and 2). 

(3) Brightness temperature differences 

Studies show that brightness temperature (BT) differences between two IR 

spectral bands are very useful for detecting clouds (Ackerman et al. 1998).  For example, 

in the 8µm region, ice/water particle absorption is at a minimum, while atmospheric 

water vapor absorption is moderate.  In the 11µm region, the opposite is true; particle 

absorption is at a maximum and atmospheric water vapor absorption is relatively 

minimal.   

By using bands in these two regions in tandem, cloud properties can be 

distinguished (Inoue 1985; Prabhakara et al. 1993).  Large positive BT8.6 – BT11 values 

indicate the presence of cirrus clouds, where BT8.6 defines the BT of 8.6µm.  This is due 

to the larger increase in the imaginary index of refraction of ice over that of water.  For 

clear conditions, the BT8.6 – BT11 will usually be negative due to stronger atmospheric 

water vapor absorption at 8.6µm than at 11µm.  Most clouds appear as positive values in 

the BT8.6 – BT11 image.  

A third band in the 12µm region will enable cloud phase delineation (Strabala et 

al. 1994).  Water particle absorption increases more between 11µm and 12µm than 

between 8.6µm and 11µm, while the increase of ice particle absorption is greater between 
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8.6µm and 11µm than between 11µm and 12µm.  Thus, the BT11 – BT12 values of water 

clouds are greater than the BT8.6 – BT11.  Conversely, BT8.6 – BT11 values of an ice cloud 

scene are greater than coincident BT11 – BT12.  Therefore, ice and water clouds will 

separate in a scatter diagram of BT8.6 – BT11 versus BT11 – BT12, with ice clouds lying 

above the unity slope and water clouds below.  Mixed phase or partial radiometer filled 

ice over water clouds will exhibit characteristics of both ice and water clouds in this 

format, grouping near the unity slope.  This information is extremely useful for nighttime 

classification when the visible measurements are not available. 

Table 3 lists three types of features in the spectral information (reflectance and 

BTs), spatial information (variances), and BT differences used by the ML classification 

algorithm.  

5. Identification of each class in the ML classification mask 

Each class is identified based on the spectral and spatial radiance characteristics.  

In general, ML classifies most surface and cloud types with the same characteristics as 

the MODIS cloud mask (see Table 2 for the initial classes), although there might be 

significant adjustments in pixel assignments among classes.  Some classes may change 

their physical characteristics after the ML classification procedure; for example: 

• Class 2: Clear coast may change to another clear surface; or 

• Class 6: Shadow of cloud may change to mixed surface type; or 

• Class 9: Cirrus cloud may change to clear surface.  

The cloud type in the MODIS cloud mask may also change after ML 

classification.  For example, high cloud in the cloud mask changes to middle-high cloud 

when there is a substantial error in the MODIS cloud mask procedure.  Several tests are 
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applied to the class center values (VIS/NIR bands 1-7 reflectance; VIS/NIR bands 1-7, IR 

bands 27-28 and IR 11µm variances; IR bands 20 – 25 and IR bands 27-35 brightness 

temperatures; as well as BT differences between two spectral bands) to ensure the 

identification.  The tests include the three following steps. 

The first step is the identification of all clear surface types.  Classes 1, 2, 4 and 7 

are clear classes according to the MODIS cloud mask; however, they will need to pass 2 

additional tests discussed below.  Class 3 will be tested for desert or low clouds; class 5 

will be tested for snow or low clouds; and class 9 will be tested for cloudy or clear.  A 

class is determined to be clear only if it passes all the clear tests.  Several tests are 

described below. 

(1) Radiance Threshold and Spectral Brightness Temperature Difference Tests  

The clear tests used in the MODIS cloud mask algorithm are used to check each class 

of the ML classification.  For example, during the daytime the difference BT11-BT3.7 

becomes large and negative because there is reflection of solar energy at 3.7µm.  This 

technique is very successful at detecting low level water clouds during the daytime.  For 

details of the clear test procedures, see Ackerman et al. (1998).  Only those classes 

passing all the clear tests continue to the variance image test. 

(2) Variance Image Tests 

The empirical interpretation of the variances can be summarized as: a) low 

VIS/NIR bands 1-7 variances and low IR 11µm variances correspond to surface or 

homogeneous thick clouds; b) relatively low VIS/NIR bands 1-7 variances, high IR 11µm 

variances correspond to cirrus over surface; c) relatively high VIS/NIR bands 1-7 

variances, low IR 11µm variances correspond to quasi-total coverage by middle-low 



 13 

clouds; d) high VIS/NIR bands 1-7 and IR 11µm variances, with correlated variations, 

correspond to mixed coverage by thick high and middle clouds.  Using this interpretation, 

IR 11µm variances and VIS/NIR bands 1-7 variances allow the distinction between 

partial broken clouds, semitransparent clouds and surfaces that could not be separated in 

IR-VIS/NIR images (Seze and Desbois 1987).  The combination of spectral (IR 11µm 

window and VIS/NIR) and spatial (LSD of VIS/NIR bands 1-7 and IR 11µm window) 

information may allow a better determination of the surface and cloud types.  When the 

clouds form homogeneous layers, they produce partial coverages of the pixel or present 

local variations in the optical properties. 

The second step is the identification of surface types for clear classes.  This 

relies mainly on VIS/NIR bands 1 and 2 reflectance and VIS/NIR bands 1-7 variance 

information.   

Clear water class: band 2 has low reflectance, while band 1 has relatively high 

reflectance.  Very homogeneous in bands 1-2 and IR 11µm variance images; 

Clear land class: low bands 1and 2 reflectance, also homogeneous in bands 1 and 

2 variance images; 

Clear snow or ice class: high bands 1 and 2 reflectance, relatively low bands 6 and 

7 reflectance, very homogeneous in all VIS/NIR bands 1-7 and IR 11µm variance 

images; 

Desert class: relative high reflectance in all VIS/NIR bands 1-7 images, also very 

homogeneous in most VIS/NIR bands 1-7 images and IR 11µm window image.  

Coastal class: low bands 1 and 2 reflectance; relatively high variance in bands 1 

and 2 variance images, as well as in the IR 11µm variance image. 
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The third step is the identification of cloud types (for example, low/mid/high 

clouds).  The identification is based on the VIS/NIR bands 1-2 reflectance and IR 11µm 

window brightness temperatures, as well as the variance images in VIS/NIR bands 1-7 

and IR 11µm mentioned above.  For example, thick high clouds correspond to high 

reflectance, low IR 11µm window brightness temperatures; low VIS/NIR bands 1-7 

variances and low IR 11µm variances.  In contrast, the cirrus clouds correspond to 

relatively low VIS/NIR bands 1-7 variances and high IR 11µm variances.  In the IR 

11µm window image, high clouds are usually colder than the lower clouds.   

6.  ML classification with MODIS multi-spectral band measurements 

 Three cases are presented.  Each case contains a granule of MODIS data (2030 by 

1354 pixels from a 5-minute satellite pass).   

 (1) Case 1 

MODIS NIR band 2 and IR 11µm window images at 1635 UTC 5 September 

2000 are presented in figures 1 and 2 (left panels), respectively.  Each class is initially 

defined by the MODIS cloud mask algorithm (see Table 2 for the initial class index).  

The ML classification procedure ends after 6 iterations.  Thirteen classes are obtained 

whose center values are given in Table 4.  The identifications given to the classes are 

based on the previously described analysis: 

Classes 1, 2, 3, and 4 correspond to clear surface: the most homogeneous spatially 

in VIS/NIR bands 1-7 and IR 11µm window, warm in the IR 11µm window and dark in 

the VIS/NIR bands 1and 2 images, negative values in BT8.6 – BT11 image and small 

values in BT11 – BT3.7 image. 
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Classes 5, 8, and 9 are mid-low clouds (“M.L. Cld” in tables 4-6) or mixed 

clouds: high IR 11µm variances with very high variances in VIS/NIR bands 1-7, large 

negative values in BT11 – BT3.7 image. 

Class 6 corresponds to a class of mixed surface types (“Mixed” in tables 4-6): 

high variances in IR 11µm and relatively low variances in VIS/NIR bands 1 – 7, warm in 

IR 11µm window and dark in VIS/NIR bands 1 and 2 images, small values in BT11 - 

BT3.7 image. 

Classes 10 and 12 correspond to middle-high (“M.H. Cld” in tables 4-6): very 

bright in VIS/NIR bands 1 and 2 images, relatively low variances in VIS/NIR bands 1-7 

and IR 11µm, large negative values in BT11 – BT3.7 image, relatively high reflectance in 

1.38µm image. 

Class 13 corresponds to low clouds: low variances in IR 11µm with warm 

brightness temperature, high variances in VIS/NIR bands 1 – 7, very bright in VIS/NIR 

bands 1 and 2 images, large negative values in BT11 – BT3.7 image.  

Class 15 corresponds to high thick clouds (“H. Cld” in tables 4-6): relatively 

homogeneous in IR 11µm window and VIS/NIR bands 1-7, coldest in IR 11µm window 

and brightest in VIS/NIR bands 1 and 2 images, large negative values in BT11 – BT3.7 

image.  

Class 11 is an undecided class or mixed types: small percentage of pixels in the 

image, huge variances in IR bands 27-28 and IR 11µm. 

Classes 7 and 14 were not found in this case. 

Figure 3a shows the cloud mask (left panel) and classification mask (right panel).  Using 

15 unique colors in the display was not deemed practical for interpretation so we have 
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combined the classes into 8 types.  In general, the cloud mask and the classification mask 

have similar cloud/clear separations, however, the ML classification changes the cloud 

types of the initial classification obtained from the MODIS cloud mask.  In addition, 

some water pixels in the Western Lake Erie, initially assigned to low clouds by the 

MODIS cloud mask algorithm, are classified as clear water by the ML classification, 

which can be clearly seen from the broad cloud mask and classification mask shown by 

Figure 3b.  This might be due to the relatively high VIS/NIR bands 1-2 reflectance of 

clear water pixels over that area, which are not well separated from the low clouds by the 

MODIS cloud mask algorithm.  Another possibility is that the thresholds used in the 

cloud mask algorithm are not dynamic and they may not be indicative of the spectral 

characteristics over that area in this particular case.  If the water scene and low clouds can 

be separated by some of those spectral and spatial characteristics, the ML classification 

process should be able to separate them. 

 Validation of cloud classification is always difficult (Rossow and Garder 1993).  

Two important steps in validation are image interpretation and quantitative analysis. 

Figure 4 shows the MODIS composite image from bands 1, 4, and 3 (left panel) and 

BT8.6 – BT11 image (right panel).  It shows the cloud pattern depicted in both images of 

Figure 4 is well identified by both the MODIS cloud mask and ML classification mask in 

Figure 3a.   

 (2) Case 2 

As the cloud mask algorithm is sometimes less reliable where snow cover exists, 

classification of a winter case is demonstrated here.  Figure 5 shows the band 2 (left 

panel) and its variance (right panel) images for 1640UTC 17 December 2000.  In general, 
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cloud and snow appear very similar in the 0.86µm (band 2) image, even in the variance 

images for VIS/NIR bands 1 – 7.  However, they appear dissimilar in the band 6 

(1.64µm) image.  Eleven classes are obtained in this case whose class center values are 

given in Table 5.  The identifications given to the classes are: 

Classes 1, 2, 4 and 9 are clear surface: very spatially homogeneous in IR 11µm 

window and VIS/NIR bands 1-7 images, warm in the IR 11µm window and dark in 

VIS/NIR bands 1 and 2 images, small values in BT11 – BT3.7 image. 

Class 3 is low clouds: relatively low variance in IR 11µm window, brighter in the 

VIS/NIR bands 1 and 2 images than classes 2 and 9, very high variances in VIS/NIR 

bands 1 – 7. 

Class 5 corresponds to snow: very homogeneous in IR 11µm window and 

VIS/NIR bands 6-7 images, bright in VIS/NIR bands 1 and 2 but relatively dark in bands 

6 - 7 images, small values in BT11 - BT3.7 image. 

Classes 8 and 13 correspond to mid-high clouds or mid-low clouds: high 

variances in VIS/NIR bands 1-7 and IR 11µm, bright in VIS/NIR bands 1 and 2 images, 

large negative values in BT11 – BT3.7 image. 

Class 10 corresponds to high thick clouds: relatively homogeneous in both IR 

11µm window and VIS/NIR bands 1-7 images, very cold in IR 11µm window and very 

bright in VIS/NIR bands 1 and 2 images, large negative values in BT11 – BT3.7 image. 

Class 12 corresponds to mid-low clouds: low variances in IR 11µm and relative 

high variances in VIS/NIR bands 1 – 7, bright in the VIS/NIR bands 1 and 2 images, 

large negative values in BT11 – BT3.7 image. 



 18 

Class 6 is an undecided class or mixed types: small percentage of pixels in the 

image, huge variances in IR bands 27 - 28 and IR 11µm. 

Classes 7, 11, 14 and 15 are not found in this case. 

Figure 6 shows the associated MODIS cloud mask (left panel) and ML 

classification mask (right panel).  In the cloud mask algorithm, snow is not well separated 

from the low clouds in the eastern part of the United States.  However, it is well separated 

in the ML classification.  Figure 7 shows the MODIS BT11 – BT3.7 image (left panel) and 

1.64µm (band 6) image (right panel).  Usually, clouds are revealed by large negative 

values in BT11 – BT3.7 due to the strong solar reflection of the 3.7µm over the clouds.  

However, the solar reflection of 3.7µm over clear surfaces, even over the snow cover, is 

usually small.  There are large negative values over the northeast coastal region and over 

the Lake Michigan area where clouds exist.  The band 6 image also shows the cloud 

pattern in this area.  

Figure 8 presents the scatter plots of band 2 (panel 1), LSD band 2 (panel 4), band 

6 (panel 2), LSD band 6 (panel 5), BT8.6 – BT11 (panel 3) and BT11 – BT3.7 (panel 6) 

versus BT11 for the 4 boxes outlined in the right panel of figure 6 (representing snow, low 

clouds, class of mixed cloud types, and high clouds, respectively from left to right).  High 

clouds are well separated in panel 1; snow is well separated by band 6 in panel 2, all four 

objectives are well separated by BT11 - BT3.7 image in panel 6.  This figure illustrates that 

there is significant separation between snow and clouds in the ML classification 

procedure. 

Figure 9 shows the snow cover map for 17 December 2000 from the National 

Oceanic and Atmospheric Administration (NOAA) (http://www.nohrsc.nws.gov/index.html).  
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This snow chart was created from various sources of data including ground weather 

observations, DMSP microwave products, and other polar and geostationary satellite 

observations.  Snow covers most of the northern United States of America; however, 

Lake Michigan was shown as open water in this chart, which is consistent with the ML 

classification results. 

 (3) Case 3 

The challenge of detecting clouds over desert region is the focus of Case 3.  

Figure 10 shows band 2 (left panel) and its variance (right panel) images of an African 

Sahel/desert scene at 0935UTC 05 November 2000, indicating clouds in the southern part 

of the granule.  The MODIS cloud mask algorithm sometimes has difficulties in desert 

areas since the VIS/NIR bands 1 and 2 reflectance is usually higher over clear desert than 

over other clear vegetated land, and sometimes clear desert is not well separated from 

low clouds in the MODIS cloud mask algorithm.  Twelve classes are obtained from the 

cloud mask algorithm and the ML classification in this case; the class center values are 

given in Table 6.  The identifications given to the classes are: 

Classes 1, 4 and 9 are clear surface: homogeneous in IR 11µm window, dark in 

VIS/NIR bands 1 and 2 images and warm in IR 11µm window image, small values in 

BT11 – BT3.7 image.  

Classes 2 and 3 are clear desert surface: very spatially homogeneous in IR 11µm 

window and VIS/NIR bands 1-7 images, very warm in IR 11µm window and relatively 

bright in most VIS/NIR bands 1-7 images, small values in BT11 – BT3.7 image. 
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Class 8 corresponds to mid-low clouds: relatively bright in the VIS/NIR bands 1 

and 2 images, low variances in VIS/NIR bands 1 – 7 and very high variances in IR 11µm, 

large negative values in BT11 – BT3.7 image. 

Class 10 corresponds to high clouds: brightest in VIS/NIR bands 1 and 2 images, 

coldest in IR 11µm window image, very homogeneous in VIS/NIR bands 1-7 images and 

relative high variances in IR 11µm, large negative values in BT11 – BT3.7 image. 

Classes 11 and 12 correspond to mid-low clouds or mid-high clouds: bright in 

VIS/NIR bands 1 and 2 images, high variances in VIS/NIR bands 1 – 7 and IR 11µm, 

large negative values in BT11 – BT3.7 image.   

Classes 13 and 15 correspond to mid-low clouds: bright in VIS/NIR bands 1 and 2 

images, very high variances in VIS/NIR bands 1 – 7 and relative high variances in IR 

11µm, large negative values in BT11 – BT3.7 image. 

Classes 5, 7 and 14 are not found in this case. 

Figure 11 shows the MODIS cloud mask (left panel) and ML classification mask 

(right panel) for this case.  In the MODIS cloud mask algorithm, a drought lake was mis-

identified (classified as clouds) but it is recognized by the ML classification (classified as 

water class in the right panel of Figure 11).  Some striped lines existed in the cloud mask 

due to the use of band 36 in the cloud mask algorithm; band 36 was not used in the ML 

classification.  The cloud coverage from the cloud mask is very close to that of the ML 

classification results although there are significant cloud type changes (e.g., less high 

clouds in the ML classification than in the MODIS cloud mask).  Also, the MODIS cloud 

mask has more clear desert area than the ML classification. 
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Figure 12 shows the MODIS BT8.6 – BT11 image (left panel) and 11µm image 

(right panel).  Clouds indicate positive values in the BT8.6 – BT11 image; large negative 

values in the BT8.6 – BT11 image here should correspond to desert since the surface 

emissivity has the potential to be significantly lower at 8.6µm than at 11µm in desert 

regions (Salisbury and D’Aria 1992). 

 The initial classification results from the cloud mask may be sensitive to the 

thresholds in some regions, especially where desert exists.  In order to test the sensitivity 

of both the MODIS cloud mask and ML classification algorithms to the thresholds used 

in the MODIS cloud mask, the thresholds were changed in the MODIS cloud mask 

algorithm.  Some arid and semi-arid zones were purposefully misidentified as vegetated 

land, where visible band thresholds are lowered.  The MODIS cloud mask then 

misinterpreted the brighter than expected surface reflectances as clouds.  Figure 13 is the 

MODIS cloud mask (left panel) with altered (incorrect) thresholds and its corresponding 

ML classification mask (right panel).  In the cloud mask algorithm, many desert pixels 

are mistaken for lower clouds due to inappropriate thresholds; however, those low cloud 

pixels are correctly reclassified as desert after the ML classification.  Although there are 

some differences for the desert/land separation between the two classifications (see 

figures 11 and 13), the clear/cloud separation is almost the same in both classifications.  

This offers some reassurance that the ML classification procedure is relatively insensitive 

to the thresholds used in the MODIS cloud mask algorithm.    

 

7. Discussion 
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Classification accuracy, computation efficiency, and separability of each class are 

very important considerations when applying this technique in the MODIS real time data 

processing.    

Classification accuracy is important; and several sources of errors should be 

addressed.  First, a specific type of scene or cloud may not be classified or separated; this 

usually happens when the class appears very close to another class in the MODIS visible 

and infrared imagery.  For example, snow sometimes appears very similar to low clouds 

and is difficult to separate; it may simply be misclassified as low clouds.  Second, pixels 

at the boundaries between two different classes may be assigned to the wrong class.  

When pixels are close to two classes, those pixels are difficult to assign.  Third, some 

classes may be incorrectly identified; this happens to some low cloud types.  In general, 

clear scenes can be identified with considerable confidence since they are warmer in the 

IR window band, have lower reflectance in the visible bands, and are more homogeneous 

in the LSD images.  Some ML classification errors can be reduced by using a more 

accurate initial classification or using more a priori knowledge.  A better initial 

classification requires less adjustment for each class in the iterations and reduces the 

number of iterations, therefore producing more reliable final classification results.  

However, a poor initial classification requires more adjustments for each class and more 

iterations, therefore producing a classification result that might not be stable.  In addition, 

instrument noise and calibration errors may affect the cloud mask algorithm, and thus the 

classification results.  Accurate calibration is necessary to avoid errors in the cloud mask 

since the cloud mask algorithm uses a variety of thresholds.  Mathematically, the iterative 

classification procedure is convergent; however, the convergence speed and stability are 
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very dependent on initial classification, separability of different classes, selection of 

features, and definition of distances used to separate classes in the classification 

algorithm.  

Computation efficiency is important for real time data processing, as with MODIS 

data from a direct broadcast stations.  The ML classification procedure for a MODIS 

granule takes several minutes on an SGI Origin 2000 computer or a Sun Unix 

workstation.  More iterations require more computation time, with the iteration number 

depending on the initial classification.  A coarse initial classification, for example, a 

simple visible and infrared box classification (Li and Zhou 1990), will need more 

iterations.  A better initial classification, for example, one based on the cloud mask in this 

paper, needs fewer iterations for convergence.  Determination of the iteration 

convergence is based on a classification matrix ),( jiC  that indicates the percentage of 

pixels of the i th class of the last iteration assigned to the j th class after the current 

iteration.  Figure 14 shows the classification matrix of the first iteration (14a), the third 

iteration (14b) and the sixth iteration (14c) of case 1.  It can be seen from Figure 14 that 

there are significant changes from the first iteration to the third iteration, but the matrix 

tends to the diagonal after the sixth iteration indicating convergence in the classification 

procedure.  Usually, 6 iterations produce stable classification results.     

Separability is very important in the classification.  In general, if two classes are 

separated by a spectral band or a spatial characteristic, they are separable in the 

classification.  Figure 8 demonstrates that several classes have different spectral or spatial 

characteristics.  In order to further analyze the separability of two different classes, the 

distance between each class and its neighbor class (a neighbor class is defined as its 
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nearest class in terms of distance) is calculated.  The distance between two classes iω  and 

jω  is defined by 

)()(),( 1
ji

T
jijiD µµµµµµ −Σ−= − ,     (4) 

where ∑  is the covariance matrix for all pixels.  The uncertainty in the distance, or 

maximum noise distance, can be estimated by Eq.(3) as 

 )(4),( 1
ji

T
jiD µµηµµδ −∑≤ − ,     (5) 

where η  is the noise vector for each feature used in the ML classification.  Figure 15 

shows the distance between each class and its neighbor class, as well as the maximum 

noise distance based on the classification for case 1.  In Figure 15, for example, C2-C4 

means that class 4 is the neighbor of class 2.  From Figure 15, most classes are well 

separated, but classes 2 and 4 are very close and thus not well separated (both class 2 and 

4 are clear land in this example).  In general, most classes from the classification 

procedure should be separable from each other.  All classes should be separable since the 

class distances are all larger than the maximum noise distances.  Note that the distance 

between a cloud class and its nearest clear neighbor class can also be used as a 

confidence level for this cloud class in ML classification.  For example, if a low 

stratiform class is close to its nearest clear neighbor class, say snow class, then a low 

confidence level should be assigned to this cloud class.   

Use of the variance images will improve the accuracy of ML classification.  

Figure 16 is similar to Figure 6 but the ML classification mask in the right panel does not 

use VIS/NIR bands 1-7, IR bands 27-18 and IR band 31 variance images.  More clouds 

are detected by ML classification in Figure 16 in southern Florida compared to the 
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classification mask in Figure 6 that includes all variance images.  This might be due to 

the similar appearance of clouds and surface in that area in both VIS/NIR bands 1-2 and 

IR 11µm window images, but they should have significantly different appearances in 

some of the variance images.  In addition, some clear land pixels in southern Florida are  

classified as mixed surface type by ML classification without variance images, indicating 

that variance images play an important role in identifying some surface types.  The 

classification matrix was computed to indicate the percentage of pixels in the i th class of 

ML classification with variance images assigned to the j th class of ML classification 

without variance images.  It shows that class 5 of snow has almost no change, indicating 

that the snow detection is less sensitive to the variance images.  Some pixels of class 4 

(clear land) in the ML classification with LSD have changed to class 6 (mixed surface 

types) in the ML classification without LSD (see table 5 for the 11 classes). 

The size of the image can also influence the classification results.  Currently a 

granule of MODIS data (2030 by 1354 pixels) is used for a scene classification.  On one 

hand, if the size of the image is too small, there might be fewer classes contained in the 

data and the separability might be low since there is no spatial variation in the imagery.  

On the other hand, if the size of the image is too large, there may be too many spatial 

variations in the imagery and too many classes so that different classes may show similar 

spectral or textural characteristics.  A proper size is needed to allow enough scene 

variation but to avoid classifying different classes as one. 

This ML classification procedure is pursued to extract the maximum information 

from MODIS measurements, to reduce the need for auxiliary data, and to have a better 

understanding of the clear sky and cloud variability.  If auxiliary data is not available or 
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in certain situations (such as in the presence of snow) the cloud mask may not be of good 

quality, a simple visible-infrared box classification can be used for initial classification 

(Li and Zhou 1990).  Also, if the previous near time classification center values were 

stored as training or reference data, these center values could also be used for initial 

classification based on the Bayesian decision method (Li et al. 1992). 

8. Conclusion and future work 

A ML classification initialized from the MODIS cloud mask algorithm was used 

to classify the scenes and clouds.  The VIS/NIR and IR 1km resolution spectral 

information and VIS/NIR/IR spatial information are used in the classification.  The aim 

of this paper is to demonstrate the usefulness of multi-band spectral and spatial imagery 

information in identifying clear and cloudy scene types, and to find an effective way to 

improve the MODIS cloud mask when the thresholds used in cloud mask algorithm are 

not representative.  Results of applying reflectance, BT, local variances, and BT 

differences between two IR spectral bands confirm the usefulness of these parameters for 

cloud/clear separation, as well as for separating between the cloud types or clear types.  

The 1km resolution ML classification mask improves the 1km resolution MODIS cloud 

mask in some situations.  Combined use of the MODIS cloud mask and ML cloud 

classification improves identification of clear skies in the MODIS imagery as well as 

cloud types.   

Future work includes more case studies, especially in polar regions and African 

deserts where the surfaces may have a very unique appearance in the MODIS imagery.  

The utility of prior classification results as an initial classification will be studied; for 

example, daytime classification results can be used as the initial classification for 



 27 

nighttime classification since the cloud mask is less reliable at night.  In addition, the 

impact of using classification in atmospheric profile and cloud retrievals will be studied.  

The size for image processing and its effect on cloud classification will also be 

investigated.  Global classifications will also be investigated and the maximum number 

of cloud classes will be explored.  
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Figure captions  

Figure 1, The MODIS 0.86µm (band, left panel) and its LSD (right panel) images of  

MODIS at 1635 UTC on 5 September 2000 showing the clouds over the eastern 

part of the United States.  

Figure 2, The MODIS 11µm (band 31) brightness temperature image (left panel) and  

its LSD (right panel) image at 1635 UTC on 5 September 2000 over the eastern 

part of the United States.  

Figure 3a, The MODIS cloud mask (left panel) and ML classification mask (right panel)  
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at 1635 UTC on 5 September 2000 indicating that classes of clear water, clear 

land, mixed types, mid-low clouds, mid-high clouds, high clouds classified by the 

MODIS cloud mask and ML classification algorithms. 

Figure 3b, Broad image of Figure 3a which shows the benefit of the ML classification in  

the vicinity of the coastline (see arrows). 

Figure 4, The MODIS composite true color image from bands 1, 4, and 3 (left panel) and  

BT8.6 – BT11 image (right panel) at the 1635UTC on 5 September 2000. 

Figure 5, The MODIS band 2 image (left panel) and its variance image (right  

panel) at 1640UTC on 17 December 2000. 

Figure 6, The MODIS cloud mask (left panel) and ML classification mask (right panel)  

at 1640UTC on 17 December 2000. 

Figure 7, The MODIS BT11 – BT3.7 (left panel) and MODIS band 6 image (right panel) at  

1645 UTC on 17 December 2000.   

Figure 8, The scatter plots of band 2 (panel 1), LSD band 2 (panel 4), band 6 (panel 2),  

LSD band 6 (panel 5), BT8.6 – BT11 (panel 3) and BT11 – BT3.7 (panel 6) versus IR 

11µm window brightness temperature for the 4 boxes outlined in the right panel 

of figure 6 (represent snow, low clouds, class of mixed cloud types, high clouds, 

from left to right, respectively).   

Figure 9, NOAA’s snow and ice chart on 17 December 2000.  

Figure 10, The MODIS band 2 image (left panel) and its variance image (right panel) at  

0935UTC on 05 November 2000. 

Figure 11, The MODIS cloud mask (left panel) and ML classification mask (right panel)  

at 0935UTC on 05 November 2000. 



 33 

Figure 12, The MODIS BT8.6 – BT11 image (left panel) and 11µm image (right panel)  

at 0935UTC on 05 November 2000. 

Figure 13, The MODIS cloud mask (left panel) with alternate (incorrect) thresholds and  

its corresponding ML classification mask (right panel) at 0935UTC on 05 

November 2000.  This figure is part of the sensitivity study. 

Figure 14, The MODIS ML classification matrix of the first iteration (14a), the third  

iteration (14b) and the sixth iteration (14c) of case 1 (1635UTC on 05 September 

2000).   

Figure 15, The distance between each class and its neighbor class, along with the  

maximum noise distance based on the classification for case 1 (1635UTC on 05 

September 2000). 

Figure 16, The MODIS cloud mask (left panel) and ML classification mask (right  

panel) without variance images for case 2 (1640UTC on 17 December 2000). 

List of tables 

Table 1, MODIS technical specifications. 

Table 2, The initial classes from the MODIS cloud mask algorithm. 

Table 3, The three types of features used in the ML classification algorithm. 

Table 4, Class center values of thirteen classes at 1635UTC 5 September 2000 (Case1).   

The units are K for IR bands and reflectance (%) for VIS/NIR bands. 

Table 5, Class center values of eleven classes at 1640UTC 17 December 2000 (Case 2).  

Table 6, Class center values of twelve classes at 0935UTC 05 November 05, 2000 (Case  

3).  
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Table 1: MODIS Spectral Band Specifications 

Primary use Band Bandwith1 Spectral radiance2 Required SNR3 

Land/Cloud/Aerosols Boundary 1 620-670 21.8 128 

 2 841-876 24.7 201 

Land/Cloud/Aerosols Properties 3 459-479 35.3 243 

 4 545-565 29.0 228 

 5 1230-1250 5.4 74 

 6 1628-1652 7.3 275 

 7 2105-2155 1.0 110 

Ocean Color/Phytoplankton/Biogeochemistry 8 405-420 44.9 880 

 9 438-448 41.9 838 

 10 483-493 32.1 802 

 11 526-536 27.9 754 

 12 546-556 21.0 750 

 13 662-672 9.5 910 

 14 673-683 8.7 1087 

 15 743-753 10.2 586 

 16 862-877 6.2 516 

Atmospheric Water Vapor 17 890-920 10.0 167 

 18 931-941 3.6 57 

 19 915-965 15.0 250 

Primary use Band Bandwith1 Spectral radiance2 Required NE∆T4 (K) 

Surface Temperature 20 3.660-3.840 0.45 (300K) 0.05 

 21 3.929-3.989 2.38 (335K) 2.00 

 22 3.929-3.989 0.67 (300K) 0.07 

 23 4.020-4.080 0.79 (300K) 0.07 

Temperature profile 24 4.433-4.498 0.17 (250K) 0.25 

 25 4.482-4.549 0.59 (275K) 0.25 

Cirrus Clouds/water vapor 26 1.360-1.390 6.00 150 (SNR) 
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Primary use Band Bandwith1 Spectral radiance2 Required SNR3 

 27 6.535-6.895 1.16 (240K) 0.25 

 28 7.175-7.475 2.18 (250K) 0.25 

 29 8.400-8.700 9.58 (300K) 0.05 

Ozone 30 9.580-9.880 3.69 (250K) 0.25 

Surface Temperature 31 10.780-11.280 9.55 (300K) 0.05 

 32 11.770-12.270 8.94 (300K) 0.05 

Temperature profile 33 13.185-13.485 4.52 (260K) 0.25 

 34 13.485-13.785 3.76 (250K) 0.25 

 35 13.785-14.085 3.11 (240K) 0.25 

 36 14.085-14.385 2.08 (220K) 0.35 

1 Bands 1 to 19 are in nm, and bands 20 to 36 are in µm;   2 Spectral Radiance values are (W m-2 sr-1 µm-1);   3 SNR = 

Signal-to-noise ratio;   4 NE∆T = Noise-equivalent temperature difference 
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Table 2: Initial classes from MODIS cloud mask algorithm 

Class Index  Content 

1  Confident clear water  

2  Confident clear coastal 

3  Confident clear desert or semi-arid ecosystems 

4  Confident clear land 

5  Confident clear snow or ice 

6  Shadow of cloud or other clear 

7  Other confident clear 

8  Cirrus detected by solar bands 

9  Cirrus detected by infrared bands 

10  High clouds detected by CO2 bands 

11  High clouds detected by 6.7 micron band 

12  High clouds detected by 1.38 micron band 

13  High clouds detected by 3.7 micron and 12 micron bands 

14  Other clouds or possible clouds 

15  Undecided 
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Table 3: Features used in ML classification algorithm 

Features Unit Used in Cloud Mask Primary Use 

BAND1 % Y Clouds, shadow  

BAND2 % Y Low clouds 

BAND3 % N  

BAND4 % N Snow  

BAND5 % Y Snow  

BAND6 % Y Snow, shadow  

BAND7 % N  

LSD-BAND1 % N Cirrus, low clouds, surface 

LSD-BAND2 % N Cirrus, low clouds, surface 

LSD-BAND3 % N  

LSD-BAND4 % N  

LSD-BAND5 % N Clouds, snow, surface 

LSD-BAND6 % N Clouds, snow, surface 

LSD-BAND7 % N  

BAND17 % N  

BAND18 % Y Low clouds 

BAND19 % Y Shadow  

BAND20     K Y Shadow  

BAND21    K Y  

BAND22  K N  

BAND23    K N  

BAND24   K N  

BAND25    K N  

BAND26 % Y  

BAND27    K Y  

LSD-BAND27 K N  

BAND28    K N  

LSD-BAND28 K N  

BAND29   K Y  

BAND31     K Y Clouds, surface 
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LSD-BAND31 K N  

BAND32 K Y Clouds, surface 

BAND33 K N  

BAND34 K N  

BAND35 K Y High clouds 

BT11-BT12 K N  

BT8.6-BT11 K N Clouds 

BT11-BT6.7 K N Clouds 

BT3.9-BT3.7 K N  

BT11-BT3.7 K N Clouds 

BT12-BT4 K N  

BT13.7-BT14 K N  

BT11-BT3.9 K N  
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Table 4, Class center values of thirteen classes at 1635UTC 5 September 2000 (Case1).   

The units are K for IR bands and reflectance (%) for VIS/NIR bands. 

 

Features Water Land Land Land M.L. Cld Mixed M.L Cld M.L. Cld M.H. 
Cld 

Und. M.H.Cld M.L. Cld H. Cld 

Percentage 9.99 15.23 7.67 18.00 4.00 3.37 4.79 8.16 6.90 0.20 5.30 13.37 2.96 

Class Index 1 2 3 4 5 6 8 9 10 11 12 13 15 

BAND1 3.08 4.25 9.85 5.16 22.51 8.23 29.80 17.60 60.32 30.37 55.55 58.43 72.77 

BAND2 1.74 21.43 26.68 26.75 26.27 9.40 40.10 31.13 63.15 32.38 59.14 63.91 73.44 

BAND3 9.91 8.74 15.72 8.76 28.03 14.90 33.73 21.89 64.54 36.51 59.68 61.49 76.32 

BAND4 5.29 6.53 12.37 7.35 23.95 10.12 31.45 19.31 60.40 31.83 55.87 58.68 72.22 

BAND5 1.35 21.11 28.93 27.00 24.40 8.82 37.88 30.87 48.54 27.41 48.98 53.99 53.50 

BAND6 0.92 11.68 19.69 16.55 16.07 6.66 31.23 23.53 19.60 15.18 31.06 48.63 20.98 

BAND7 0.56 4.40 8.76 6.87 9.64 4.13 20.11 14.45 9.82 8.51 17.89 30.36 11.16 

LSD-BAND1 0.28 0.59 1.40 0.86 2.40 1.98 11.70 5.91 0.87 2.88 1.61 3.25 1.19 

LSD-BAND2 0.40 3.16 2.03 2.90 2.61 2.53 11.33 6.19 0.97 3.26 1.80 3.68 2.19 

LSD-BAND3 0.16 0.25 0.64 0.30 1.81 1.27 8.63 3.61 0.75 2.19 1.23 2.09 1.05 

LSD-BAND4 0.18 0.37 0.74 0.45 1.91 1.39 9.42 3.97 0.76 2.30 1.28 2.28 1.03 

LSD-BAND5 0.27 1.87 1.58 1.30 1.89 1.77 8.28 4.04 0.96 2.34 1.71 3.60 1.78 

LSD-BAND6 0.24 1.18 1.94 1.08 1.34 1.58 8.03 4.29 0.50 1.46 1.09 1.93 0.52 

LSD-BAND7 0.21 0.65 1.44 0.84 0.95 1.21 6.26 3.73 0.37 0.96 0.87 1.47 0.36 

BAND17 1.16 18.39 18.69 23.12 22.28 6.85 31.90 24.35 51.70 25.53 46.57 47.26 55.36 

BAND18 0.65 8.77 4.51 11.15 14.59 3.20 14.57 10.00 39.92 22.76 29.51 18.00 60.16 

BAND19 0.80 12.29 8.88 15.54 17.22 4.36 20.58 14.88 45.27 24.09 36.29 27.98 61.08 

BAND20 292.53 290.62 306.35 296.64 285.05 296.69 305.49 303.34 264.35 281.89 284.76 307.03 262.01 

BAND21 291.46 288.49 304.43 294.16 277.43 293.82 296.32 296.04 250.19 273.40 272.31 295.60 241.86 

BAND22 291.67 288.67 304.94 294.53 277.77 294.23 296.96 296.61 250.20 272.92 272.44 296.35 241.11 

BAND23 288.69 285.45 300.60 290.47 273.32 290.18 290.96 291.23 246.92 268.46 267.30 289.44 236.43 

BAND24 250.30 248.45 254.43 253.36 240.85 249.76 252.12 251.52 232.05 238.31 239.69 251.82 225.01 
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BAND25 268.99 266.13 275.70 271.40 252.88 268.05 268.21 268.80 234.37 247.83 247.18 266.57 221.48 

BAND26 0.21 0.62 0.60 0.73 6.52 1.07 1.71 1.13 15.38 11.91 7.93 1.92 31.88 

BAND27 244.66 245.72 246.48 250.15 233.63 239.79 247.14 246.29 230.05 233.47 233.88 245.47 223.87 

LSD-
BAND27 

0.64 0.61 0.68 0.53 1.42 0.98 0.58 0.61 0.97 10.01 0.83 0.61 1.27 

BAND28 260.11 260.57 260.85 265.14 244.21 254.42 261.11 260.79 234.93 241.48 243.05 260.27 225.14 

LSD-
BAND28 

0.43 0.41 0.57 0.35 2.47 1.27 0.52 0.50 1.25 12.94 1.17 0.48 1.36 

BAND29 286.79 284.97 294.43 289.04 261.52 283.71 282.24 284.31 239.67 258.13 253.05 278.45 226.89 

BAND31 289.98 286.93 296.85 291.65 259.85 285.05 284.08 286.21 237.94 257.39 252.10 280.81 224.62 

LSD-
BAND31 

0.40 0.74 0.98 0.78 5.12 3.01 2.48 1.97 1.81 24.21 2.17 0.90 1.57 

BAND32 288.47 286.59 294.74 291.41 257.77 283.12 283.01 284.98 237.32 256.19 251.01 280.33 224.28 

BAND33 266.05 265.00 268.91 270.13 245.71 261.88 265.83 265.74 233.77 243.66 243.97 264.96 223.19 

BAND34 253.63 252.75 256.26 256.62 239.17 250.94 255.47 254.79 231.01 237.46 239.16 255.20 222.17 

BAND35 245.68 245.14 247.98 248.17 234.84 243.70 247.74 247.05 228.76 233.37 235.16 247.50 221.60 

BT11-12 1.09 0.33 2.01 0.27 2.08 1.87 1.10 1.17 0.65 1.20 1.10 0.48 0.39 

BT8.6-11 -2.60 -2.30 -2.36 -2.16 1.61 -1.31 -1.81 -1.91 1.75 0.65 0.96 -1.87 2.32 

BT11-6.7 44.93 41.10 50.06 41.44 26.22 44.53 37.77 39.89 8.10 23.66 18.29 35.24 0.80 

BT3.9-3.7 -0.94 -2.20 -1.65 -2.24 -7.40 -2.85 -7.64 -6.61 -14.03 -9.24 -12.33 -10.81 -20.81 

BT11-3.7 -3.17 -4.11 -10.01 -4.62 -25.22 -12.58 -19.58 -16.93 -26.32 -24.38 -32.64 -26.28 -37.19 

BT12-4 -0.12 1.19 -5.92 0.62 -15.42 -7.41 -7.38 -6.14 -9.65 -11.84 -16.28 -9.04 -12.13 

BT13.7-14 7.88 7.61 8.27 8.41 4.34 7.19 7.76 7.76 2.27 4.07 4.00 7.66 0.59 

BT11-3.9 -2.23 -1.91 -8.35 -2.38 -17.82 -9.73 -11.94 -10.31 -12.28 -15.14 -20.31 -15.47 -16.38 
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Table 5, Class centers values of eleven classes at 1640UTC 17 December 2000 (Case 2).  

Features Water Land M.L. Cld Land Snow  Und. M.H.Cld Land H.Cld M.L. Cld M.H. 
Cld 

Percentage 21.46 3.80 4.14 11.53 15.12 0.21 5.92 11.30 5.57 14.15 6.77 

Class Index 1 2 3 4 5 6 8 9 10 12 13 

BAND1 3.01 9.71 11.22 4.36 22.86 15.99 25.85 5.20 37.60 27.18 20.13 

BAND2 1.69 12.26 12.42 11.07 25.13 15.99 28.82 11.09 39.45 29.90 23.09 

BAND3 8.47 13.09 15.57 7.15 25.72 20.13 28.42 8.58 40.44 29.67 22.83 

BAND4 4.93 10.28 12.38 5.22 22.82 16.60 26.04 6.07 37.08 26.89 20.19 

BAND5 1.09 11.16 12.54 13.80 16.74 13.33 27.54 13.16 33.92 27.03 21.74 

BAND6 0.93 7.36 11.30 10.50 7.39 8.69 22.06 9.54 18.85 21.37 16.19 

BAND7 0.68 4.49 8.02 5.54 3.97 5.72 14.87 5.10 12.21 15.32 11.39 

LSD-BAND1 0.17 2.15 3.99 0.66 2.03 2.27 7.66 0.63 1.06 1.82 3.34 

LSD-BAND2 0.20 2.82 4.67 1.12 2.05 2.52 8.64 1.07 1.16 2.11 3.86 

LSD-BAND3 0.10 1.25 2.38 0.20 1.16 1.64 5.30 0.20 0.85 1.04 2.20 

LSD-BAND4 0.12 1.41 2.67 0.30 1.30 1.73 5.88 0.28 0.86 1.15 2.39 

LSD-BAND5 0.16 1.92 3.25 0.98 0.90 1.85 6.37 0.82 1.09 1.45 2.93 

LSD-BAND6 0.15 1.53 3.26 1.28 0.55 1.41 5.82 0.87 0.62 1.37 2.91 

LSD-BAND7 0.13 1.14 2.59 0.95 0.42 0.99 4.26 0.60 0.52 1.14 2.40 

BAND17 1.24 10.36 9.64 10.34 21.16 12.86 25.51 10.22 38.01 26.31 20.64 

BAND18 0.62 5.88 4.32 6.16 12.01 9.40 15.37 5.97 34.86 16.07 13.11 

BAND19 0.81 7.59 6.14 7.85 15.43 10.58 19.21 7.69 36.20 20.03 16.06 

BAND20 294.79 279.93 298.61 286.72 266.25 284.60 294.43 279.06 267.89 292.38 288.51 

BAND21 293.22 275.87 293.33 285.07 262.92 280.10 283.99 276.80 253.43 279.36 277.06 

BAND22 293.27 274.70 293.27 284.16 261.05 278.52 283.19 276.17 246.69 278.18 275.98 

BAND23 288.94 270.92 288.02 280.91 258.70 274.84 276.14 272.79 240.10 269.83 268.70 

BAND24 252.12 243.25 248.40 249.37 239.04 242.95 243.99 244.75 224.47 240.62 240.48 

BAND25 270.33 256.17 266.52 265.24 248.20 256.94 256.42 258.51 222.66 249.97 250.04 

BAND26 0.07 0.66 0.50 0.54 1.30 4.83 1.92 0.47 22.65 1.98 2.57 

BAND27 253.48 245.07 248.62 252.59 239.79 244.29 248.18 246.79 220.95 243.78 243.06 
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LSD-
BAND27 

0.37 0.42 0.44 0.30 0.34 9.29 0.35 0.32 0.82 0.30 0.40 

BAND28 267.26 255.15 262.43 264.27 249.61 254.57 257.28 258.01 223.00 251.71 250.56 

LSD-
BAND28 

0.30 0.64 0.43 0.23 0.30 11.80 0.46 0.19 0.87 0.24 0.70 

BAND29 288.10 268.60 283.55 279.92 256.63 270.14 267.63 271.89 225.22 258.10 258.43 

BAND31 291.66 269.30 285.64 281.47 256.63 270.36 268.89 273.16 222.58 259.26 258.24 

LSD-
BAND31 

0.26 2.12 1.69 0.57 0.59 18.32 1.81 0.50 1.14 0.52 1.95 

BAND32 290.79 268.78 284.57 281.45 256.28 269.06 268.41 273.29 221.76 259.17 257.28 

BAND33 269.13 255.56 264.32 265.01 248.85 254.16 256.23 258.84 219.66 250.64 248.89 

BAND34 254.98 246.68 252.01 253.61 242.65 244.51 247.62 249.01 218.52 244.07 242.80 

BAND35 246.68 240.46 243.88 245.79 237.71 238.38 241.17 241.96 218.33 239.26 237.86 

BT11-12 0.77 0.48 1.01 -0.06 0.35 0.99 0.50 -0.11 0.85 0.15 0.99 

BT8.6-11 -2.51 -0.71 -2.12 -1.64 0.01 -0.66 -1.24 -1.17 2.65 -1.01 0.19 

BT11-6.7 37.70 23.80 37.15 28.94 17.05 27.21 20.99 26.43 1.67 15.40 15.16 

BT3.9-3.7 -1.34 -5.76 -5.06 -2.62 -5.32 -5.66 -10.71 -3.03 -21.15 -14.05 -12.61 

BT11-3.7 -2.61 -12.08 -12.26 -5.14 -9.71 -12.65 -24.25 -6.00 -45.14 -32.96 -30.62 

BT12-4 1.16 -2.69 -3.11 0.72 -2.36 -4.38 -7.29 0.37 -18.29 -10.64 -11.67 

BT13.7-14 8.64 6.19 8.14 7.92 5.08 6.50 6.46 6.91 0.21 5.15 4.86 

BT11-3.9 -1.27 -6.32 -7.20 -2.52 -4.39 -6.99 -13.53 -2.96 -23.99 -18.91 -18.02 
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Table 6, Class center values of twelve classes at 0935UTC 05 November 05, 2000 (Case 

3). 

Features Water Desert Desert Land Mixed M.L Cls Land H. Cld M.H. 
Cld 

M.L. Cld M.L. Cld M.L.Cld 

Percentage 0.28 15.58 20.26 20.36 3.41 9.00 10.61 5.97 6.58 4.50 2.29 0.64 

Class Index 1 2 3 4 6 8 9 10 11 12 13 15 

BAND1 12.03 17.34 32.68 7.00 11.69 18.85 9.92 68.07 39.52 45.04 22.76 39.15 

BAND2 13.43 26.65 41.28 20.94 25.03 30.18 23.01 68.07 46.17 51.62 33.75 46.18 

BAND3 16.77 13.46 19.23 9.81 14.28 22.65 14.16 71.84 43.62 48.04 24.84 41.59 

BAND4 13.70 14.18 24.06 8.26 12.51 20.14 11.64 67.88 40.32 45.49 23.14 39.75 

BAND5 11.62 34.46 49.16 25.18 28.00 31.51 25.67 54.43 42.33 48.66 35.10 41.60 

BAND6 8.82 35.44 51.72 17.83 21.70 22.82 17.55 22.15 23.16 38.67 28.91 32.04 

BAND7 5.14 25.83 45.67 8.16 12.40 14.27 8.42 11.92 12.75 25.11 19.05 18.76 

LSD-BAND1 1.45 1.05 0.66 0.37 1.92 1.45 0.49 0.80 1.04 3.36 6.23 13.25 

LSD-BAND2 3.37 1.41 0.86 0.82 2.75 1.31 0.79 1.47 0.93 3.31 6.20 12.64 

LSD-BAND3 0.81 0.25 0.22 0.10 0.92 1.01 0.30 0.69 0.87 2.35 3.74 10.08 

LSD-BAND4 0.96 0.46 0.34 0.16 1.12 1.04 0.32 0.68 0.87 2.46 4.28 10.92 

LSD-BAND5 2.67 1.14 0.74 0.60 2.23 0.99 0.63 1.89 1.09 2.79 4.60 9.29 

LSD-BAND6 2.08 1.29 0.66 0.60 2.33 0.89 0.55 0.33 0.47 1.78 4.94 8.41 

LSD-BAND7 1.30 1.37 0.76 0.55 1.93 0.85 0.50 0.32 0.42 1.24 4.06 5.78 

BAND17 9.15 22.78 34.92 16.53 18.74 24.08 17.35 56.54 40.05 42.13 24.83 34.62 

BAND18 3.60 11.06 17.53 5.63 6.21 12.56 6.11 57.01 28.50 24.37 9.16 15.15 

BAND19 5.29 15.46 24.05 9.34 10.29 16.31 9.73 59.12 32.49 30.76 14.19 22.04 

BAND20 299.16 320.95 320.61 307.96 309.07 299.96 302.65 265.43 275.63 302.03 308.12 303.03 

BAND21 297.19 317.10 313.66 307.10 306.07 292.99 300.57 252.86 266.26 290.02 301.61 296.19 

BAND22 296.84 317.16 314.15 307.13 306.12 292.41 300.53 242.10 262.41 289.26 301.65 295.79 

BAND23 293.10 311.83 306.77 304.37 301.49 286.93 296.01 235.86 257.40 282.16 295.88 290.43 

BAND24 252.91 259.94 257.77 259.27 255.79 246.68 251.43 224.48 233.50 246.52 253.66 253.51 

BAND25 271.31 283.92 279.82 279.97 276.22 261.39 271.26 219.43 239.28 256.72 270.88 268.46 

BAND26 1.04 1.32 1.77 0.73 1.08 5.05 1.83 32.86 13.66 4.99 1.60 2.28 
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BAND27 240.71 245.88 245.56 241.15 241.18 233.98 236.74 216.41 226.11 238.52 240.89 213.52 

LSD-BAND27 0.72 0.72 0.62 0.65 0.69 1.02 0.81 1.20 1.23 0.64 0.62 0.59 

BAND28 255.16 264.79 265.04 257.90 256.47 245.95 251.58 218.68 232.46 249.74 255.32 225.19 

LSD-BAND28 0.99 0.72 0.53 0.71 0.90 1.61 1.12 1.21 1.81 0.86 0.76 0.73 

BAND29 286.30 305.55 294.51 297.65 293.19 269.51 286.92 220.23 241.63 263.45 284.13 280.06 

BAND31 287.58 310.93 304.84 302.04 295.61 267.40 287.97 216.93 238.19 263.52 286.19 249.48 

LSD-BAND31 2.52 0.89 0.47 0.87 2.08 3.68 2.13 1.54 3.20 2.00 2.21 2.21 

BAND32 285.59 310.35 305.76 299.99 293.53 264.05 285.55 215.84 236.22 262.05 284.27 279.70 

BAND33 264.51 277.27 275.29 272.93 268.06 249.40 261.24 214.92 230.65 252.69 264.52 263.43 

BAND34 253.54 261.41 259.90 260.34 256.11 242.27 250.17 213.98 227.35 246.29 254.22 254.44 

BAND35 246.00 252.09 250.77 252.13 248.17 237.30 243.08 214.53 225.43 240.98 246.82 247.32 

NDVI-VEGE 152.19 182.78 167.65 225.37 207.45 186.21 212.30 152.97 162.89 162.16 183.76 171.29 

NDVI-SNOW 187.88 85.55 94.85 95.66 109.70 141.94 119.87 225.18 189.46 159.87 130.99 156.94 

BT11-12 1.93 0.52 -0.85 1.43 2.01 3.38 2.44 1.10 2.02 1.52 1.90 1.70 

BT8.6-11 -1.34 -5.49 -10.05 -3.04 -2.46 2.13 -1.04 3.31 3.42 -0.05 -2.07 -1.18 

BT11-6.7 46.86 65.24 59.13 59.91 54.45 33.19 51.20 0.59 12.31 25.23 45.35 40.51 

BT3.9-3.7 -2.60 -3.79 -7.34 -0.92 -2.99 -7.61 -2.20 -23.27 -13.15 -12.68 -6.33 -6.65 

BT11-3.7 -12.44 -9.98 -16.44 -6.63 -13.51 -32.71 -14.75 -48.37 -37.27 -38.33 -21.66 -20.79 

BT12-4 -7.82 -1.40 -1.43 -3.69 -7.86 -22.96 -10.57 -19.78 -21.14 -20.10 -11.54 -10.73 

BT13.7-14 7.52 9.49 9.23 8.70 7.95 4.95 7.06 -0.53 1.95 5.31 7.39 7.11 

BT11-3.9 -9.83 -6.20 -9.10 -5.71 -10.52 -25.09 -12.55 -24.91 -24.12 -25.65 -15.33 -14.14 

 
 


